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Abstract 

Researchers conducting research using administrative data often presume that data from 
grades 4 and 5 are better than data from grades 6 to 8 for conducting research on teacher 
effectiveness that uses value-added models because (1) elementary school teachers teach all 
subjects to their students in individual, self-contained classrooms and (2) elementary school 
classrooms are more homogenous, with little academic tracking used when assigning students to 
teachers, unlike in middle school. We examined both assumptions. First, we used data on 
teacher–student links from DC Public Schools that have undergone a roster confirmation process 
whereby teachers verify which subjects and students a particular teacher taught. We compared 
the teacher–student links that resulted from this process to data that approximate the quality of 
teacher–student links in unconfirmed administrative data. Second, to examine the extent to which 
tracking of students by achievement segregates students at the middle school level compared to 
the upper elementary school level, we compared the variation in baseline student achievement at 
upper elementary and middle school grades within classes at the same school, between classes at 
the same school, and between schools. Results show that departmentalization of teaching 
instruction across math and reading/ELA is actually quite common in grades 4–5, at least in 
DCPS; in the unconfirmed administrative data, about one in six teachers of these subjects is 
linked to a subject that he or she does not teach. In addition, we found more within-school 
variation in pre-test scores in middle school grades but an offsetting amount of between-school 
variation in upper elementary grades. As an example of how using unconfirmed administrative 
data can affect results, we examined how calculations of the year-to-year and cross-subject 
stability of value-added estimates depended on the quality of the data used. 
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I. INTRODUCTION 

The No Child Left Behind Act of 2002 required, among other things, that all children 
attending public schools be tested annually in math and reading in grades 3 to 8, and once during 
high school. A side benefit of this testing regime is that it has provided some basic data for 
estimating value-added models of teacher effectiveness in a wide array of school districts. Given 
that value-added models depend on having at least one year of pre-test scores from the prior 
school year for a teacher’s students, merging test score data with student demographic data and 
teacher–student links has made it possible to estimate value added for teachers of math and 
reading/ English language arts (ELA) in grades 4 to 8. Through the Teacher Incentive Fund, 
Race to the Top, and other initiatives, the federal government has encouraged the use of student 
growth models (of which value added is one example) in evaluations of teachers in these grades 
and subjects. Researchers have also made use of these data to examine topics ranging from the 
effectiveness of different types of schools, teacher mobility patterns, and the distribution of 
teacher effectiveness, to diagnosing the utility of value-added models themselves. 

In conducting research that estimates teacher value added using administrative data sets, it is 
often presumed that upper elementary school grades 4 and 5 provide better data than middle 
school grades 6 to 8. Two reasons are principally cited for this: (1) elementary school teachers 
teach all subjects to their students in individual, self-contained classrooms and (2) there is little 
tracking of students to teachers in elementary school compared to middle school, resulting in 
more homogeneous classrooms at the elementary school level (Harris and Anderson 2013).  

The first reason to favor elementary school grades depends on having accurate student–
teacher links, a critical data element for estimating value-added models of teacher effectiveness. 
However, misclassification errors in roster data, such as linking teachers to subjects or students 
they did not teach, could lead to bias in value-added estimates. This bias arises because teachers 
are attributed value-added estimates that do not reflect their actual contributions to student 
achievement.  

Researchers at the Value-Added Research Center at the University of Wisconsin have 
identified a number of reasons why administrative rosters may not capture the realities of 
teacher–student links, including “student attendance and mobility, teacher attendance and 
mobility, cross-subject course content, instructional supports and curriculum specialists, team 
teaching, special education and English language learner accommodations, and other divergences 
from the standard isolated classroom model” (Kluender et al. 2011). According to Battelle for 
Kids (BFK), a nonprofit organization that has assisted many states and districts in linking 
teachers and students, administrative data for districts typically do not link students and teachers 
accurately enough for use with high-stakes evaluation systems. BFK (2009) has cataloged a 
number of sources of errors in district administrative data: data systems do not capture the 
regrouping or switching of students between teachers during the school year, moment-in-time 
data systems do not accurately describe student mobility, data systems are unable to account for 
co-teaching or identify the amount of time students spend with each teacher, the process of 
aligning courses to tested subjects may not be straightforward, charter schools within the district 
may use data systems that are difficult to incorporate into the district’s system, and many 
elementary schools do not capture accurate teacher–student links in their course scheduling 
systems. In particular, if instruction is departmentalized in upper elementary grades, this may not 
be reflected in district administrative data. 
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Ordinarily, researchers assume that students linked to elementary school teachers who teach 
a “self-contained” class receive instruction in both math and reading/ELA from these teachers. 
There are many examples of research that have made this assumption when using rich data from 
state data systems (Rothstein 2010; Sass et al. 2012). BFK has reported, however, that during the 
2012–2013 school year, across a range of districts and states in which they worked, “nearly one 
in four teachers had incorrect or incomplete content area association” and “more than one in 
three rosters were inaccurate and required changes during roster verification” (BFK 2013). 

Using data from District of Columbia Public Schools (DCPS), we examined the assumptions 
on self-contained classrooms and tracking. In brief, we found that departmentalization of 
teaching instruction across math and reading/ELA is actually quite common in grades 4 and 5 in 
DCPS, where about one in six teachers of these subjects is linked to a subject in the 
administrative data that the teacher does not teach. Put another way, about one in four DCPS 
upper elementary school students were taught by a departmentalized teacher. To answer the 
second research question on how tracking could affect the differences in classroom composition 
across teachers, we computed the percentage of variance in pre-test scores explained by between-
school, within-school, and within-classroom variation. We found that there is more within-school 
variation in pre-test scores in middle school grades, but an offsetting amount of greater between-
school variation in upper elementary grades. These findings could be consistent with either a 
greater degree of tracking in middle schools or more homogenous attendance areas for 
elementary schools, or both. As an example of how using unconfirmed administrative data can 
affect results, we examined how calculations of the year-to-year and cross-subject stability of 
value-added estimates depend on the quality of the data used. 

We conclude that because of missing data on departmentalization of elementary school 
teaching, one should be cautious about assuming that data from grades 4 and 5 are necessarily 
superior to data from grades 6 to 8 for conducting research that involves value-added models of 
teacher effectiveness. We discuss implications on drawing conclusions from research that uses 
value-added estimates that are based on unconfirmed roster data. From a policy perspective, this 
finding also highlights the importance of the roster confirmation process in minimizing the 
probability of attributing value-added estimates to teachers that do not reflect their actual 
contributions to student achievement. 

II. THE ROSTER CONFIRMATION PROCESS IN DCPS 

IMPACT, which has been used at DCPS since the 2009–2010 school year, is an example of 
a high-stakes evaluation system that includes value added as an important component (Isenberg 
and Hock 2012). Under IMPACT, DCPS has rewarded teachers who earn a highly effective 
rating with performance pay, and dismissed teachers who earned an ineffective rating that year 
or a minimally effective rating for two consecutive years. Mathematica Policy Research has 
assisted DCPS since the start of IMPACT by designing and implementing a value-added model 
of teacher effectiveness based on specifications determined by DCPS and later by the Office of 
the State Superintendent of Education (OSSE). Depending on the school year, value added has 
counted for either 35 percent or 50 percent of a teacher’s overall evaluation. To ensure students 
were correctly linked to the math and reading/ELA teachers from whom they received 
instruction, DCPS has conducted an annual roster confirmation among teachers of math and 
reading/ELA in grades 4 to 8. 
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This roster confirmation process in DCPS allows a teacher to confirm exactly which 
students he or she taught during the year, for which subject(s), and for what portion of the year, 
to improve upon the original administrative data.1 DCPS first determines which teachers are 
eligible to receive value-added estimates by creating a list of teachers who are general education 
instructors of math and/or reading/ELA in grades 4 to 8. These teachers are asked to confirm 
their administrative rosters. (Teachers who are not on this list are evaluated under IMPACT 
according to a different set of components.) In most cases, eligible teachers receive lists of 
students who appear on their course rosters. For each of the first three quarters, teachers indicate 
whether they taught each subject to each student and, if so, the proportion of time they taught the 
student. For example, suppose students in a classroom typically receive math instruction from a 
particular teacher five days a week. If a student spent two days a week in the teacher’s classroom 
learning math and spent the remaining time allocated for math instruction on the other three days 
in another classroom with a special education teacher, the student would have spent 40 percent of 
math instructional time with the teacher. In recording the proportion of time spent with a student 
in a given class and subject, teachers rounded to the nearest 25 percent in the 2010–2011 school 
year and to the nearest 20 percent in the 2011–2012 school year. If a teacher claimed to have 
taught a student for less than 100 percent in any quarter, the teacher was not responsible for 
naming other teachers who taught the student. Teachers could also add students to their rosters. 
In a few cases, a prefilled roster was unavailable and teachers added all of their students. Central 
office staff at DCPS followed up with DCPS teachers as necessary to resolve apparent 
anomalies. In 2011–2012, an additional step was added in which school principals verified 
confirmed rosters. The confirmed roster data are not necessarily a perfect reflection of the 
students that teachers taught—no survey guarantees perfection—however, because these data are 
used for a high-stakes evaluation system, errors in the subjects that teachers taught are unlikely, 
and there are considerably fewer errors in the links to individual students than in the 
administrative data. 

To approximate the typical quality of administrative rosters a researcher would receive from 
a district that does not implement a roster confirmation process, we used administrative course 
scheduling data from DCPS from the 2010–2011 and 2011–2012 school years to create 
unconfirmed rosters. The DCPS course scheduling data have two components: (1) a list of 
students and their homeroom teachers and (2) a list of students showing courses in which they 
were enrolled in October and teachers associated with those courses. Teachers on the first list 
were assumed to have taught both math and reading/ELA. Teachers on the second list were 
classified as math and/or reading/ELA teachers based on the courses with which they were 
associated. Teachers who appeared on both lists were removed from the first list, as checks 
against the confirmed rosters suggested that they taught only the subject to which they were 
linked on the second list. These unconfirmed rosters included all math and reading/ELA teachers 
who had students in grades 4 through 8. 

  

                                                 
1 This paragraph describes the roster confirmation process in the 2010-2011 and 2011-2012 school years, the 

years of the data used in Sections III and IV. 
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III. RESULTS 

A. Teacher and Student Misclassification 

We would expect unconfirmed and confirmed rosters to disagree to some extent: the 
difference between the two is the value of roster confirmation. If elementary school teachers 
primarily teach in self-contained classrooms and middle school teachers primarily teach single 
subjects, there would be no reason to think that discrepancies would be more or less likely to 
arise across grade levels. However, if there is a large amount of departmentalization of 
instruction in grades 4 and 5 that is undocumented in administrative rosters, there might be 
greater discrepancies between the unconfirmed and confirmed rosters at these grade levels. 

As a first look at how administrative elementary and middle school data compare to roster-
confirmed data and to each other, we examined teachers and students who appeared either on 
unconfirmed rosters, confirmed rosters, or both rosters. The top panel of Table III.1 shows 
results separately for teachers and students in the upper elementary grades; the bottom panel 
shows results for teachers and students in the middle school grades. “All” teachers refers to any 
math and/or reading/ELA teacher who appeared in the rosters. We used data from two school 
years, 2010–2011 and 2011–2012. 

Most teachers and students appeared in both the confirmed and the unconfirmed rosters, 
although some showed up in only one of the rosters. In middle school grades, 83.1 percent of 
teachers appeared in both rosters in at least one subject; in elementary school grades, 
83.0 percent of teachers were listed in at least one subject. Of course, this means that about one 
in six teachers appeared in only one roster. Of these, more teachers appeared in the confirmed 
roster than in the unconfirmed roster. In some cases, team teachers who were excluded from 
unconfirmed rosters appeared on confirmed rosters.2 Another type of misclassification occurred 
at the teacher–student level: students either were linked to teachers who do not teach them or 
were not linked to teachers who did. 

Looking by subject, however, the results show a discrepancy in the percentage of 
misclassified teachers by grade span, with more upper elementary school teachers than middle 
school teachers in the unconfirmed rosters for each subject. For math, 18.7 percent of upper 
elementary teachers appear only in the unconfirmed data, compared to 6.7 percent of middle 
school teachers. For reading/ELA, the comparable percentages are 16.9 percent compared to 
7.1 percent. Percentages are more similar to one another for teachers who appear as either a math 
or a reading/ELA teacher in the unconfirmed data—6.0 percent for upper elementary grades 
compared to 4.7 percent for middle school grades. This suggests that unconfirmed rosters may in 
fact be failing to pick up departmentalization of instruction in upper elementary grades. 

  

                                                 
2 A small number of differences may be explained by teacher mobility, since the unconfirmed rosters were 

compiled in the fall and the confirmed rosters in the spring. Some teachers may have moved in and out of DCPS 
during the school year. A few mismatches may also have occurred because the unconfirmed rosters included only 
teacher names (but not teacher IDs), so we may have inadvertently failed to match a few teachers who were present 
in both rosters, such as married women who changed their last names. 
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Table III.1. Percentage of Teachers and Students in the Confirmed and Unconfirmed Rosters 

 
In Confirmed 
Roster Only 

In Unconfirmed 
Roster Only 

In Both 
Rosters 

Sample Size 
(In Both Rosters) 

Grades 4 to 5     

Teachers     
Math 8.8% 18.7% 72.5% 626 
Reading/ELA 8.8% 16.9% 74.4% 628 
All 10.8% 6.0% 83.1% 646 

Students     
Math 4.9% 5.5% 89.6% 11,072 
Reading/ELA 4.6% 4.7% 90.7% 10,954 
All 5.0% 3.4% 91.6% 11,104 

Grades 6 to 8     

Teachers     
Math 10.7% 6.7% 82.7% 225 
Reading/ELA 13.3% 7.1% 79.6% 240 
All 12.3% 4.7% 83.0% 424 

Students     
Math 6.2% 3.7% 90.1% 11,661 
Reading/ELA 11.8% 3.4% 84.8% 11,516 
All 4.7% 1.2% 94.1% 12,043 

Source: District of Columbia Public Schools and Office of the State Superintendent of Education administrative 
data. 

Notes: Statistics are based on two years of data, from the 2010–2011 and 2011–2012 school years. The 
sample size is the number of teacher-year or student-year observations. 

Math teachers refer to teachers who taught math only or math and reading/ELA. Reading/ELA teachers 
refer to teachers who taught reading/ELA only or math and reading/ELA. “All teachers” refers to 
teachers who taught math only, reading/ELA only, or both subjects.  

 Math students are students who were linked to math courses only or to both math and reading/ELA. 
Reading/ELA students are students who were linked to reading/ELA courses only or to both 
reading/ELA and math. “All students” refers to students who were linked to math courses only, 
reading/ELA courses only, or both. 

As a second of way of analyzing the data, we compared the two rosters once more, limiting 
the analysis to teachers and students who were present in both rosters, and treating the confirmed 
rosters as the correct information against which the unconfirmed rosters were compared. To 
calculate the percentage of teachers who were linked by the unconfirmed administrative data to 
subjects they did not teach, we created a list of teachers who taught only reading/ELA or math 
according to the confirmed rosters and looked for instances in the unconfirmed rosters where 
they were linked to both subjects. To calculate the percentage of teacher–student links that were 
incorrect, we divided the number of teacher–student links that appeared in only the unconfirmed 
rosters (but not in the confirmed rosters) by the total number of unique teacher–student links in 
the unconfirmed rosters. We combined results from the 2010–2011 and 2011–2012 school years. 
Table III.2 summarizes the prevalence of both types of misclassification. 
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Table III.2. Prevalence of Misclassification in Unconfirmed Roster Data 

 

Percentage of 
Teachers Linked to 
Subjects They Did 

Not Teach 

Percentage of 
Teacher–Student Links 

That Were Incorrect 
Number of 
Teachers 

Number of 
Teacher–Student 

Links 

Math      

Grade 4 12.8 21.2 234 5,072 
Grade 5 16.4 18.2 226 4,845 
Grades 4 and 5 14.8 19.7 453 9,917
Grade 6 5.4 5.5 93 3,524 
Grade 7 0.0 4.2 83 3,618 
Grade 8 0.0 4.1 77 3,369 
Grades 6 to 8  2.7 4.6 188 10,511

Reading/ELA     

Grade 4 16.7 18.1 245 5,069 
Grade 5 18.1 19.3 232 4,867 
Grades 4 and 5 17.1 18.7 467 9,936
Grade 6 6.1 6.7 99 3,314 
Grade 7 0.0 7.7 84 3,245 
Grade 8 0.0 7.4 79 3,212 
Grades 6 to 8 3.1 7.3 191 9,771

Source: District of Columbia Public Schools and Office of the State Superintendent of Education administrative 
data. 

Notes: Statistics are based on two years of data, from the 2010–2011 and 2011–2012 school years. The 
sample size is the number of teacher-year or student-year observations. 

In this table, we only considered teachers and students whom we were able to match and identify 
across the confirmed and unconfirmed rosters. 

The proportion of teachers linked to subjects they did not teach was larger among those who 
taught elementary school grades than among those who taught middle school grades. In math, 
14.8 percent of upper elementary school teachers were misclassified, compared to 2.7 percent of 
middle school teachers. In reading/ELA, 17.1 percent of upper elementary teachers were 
misclassified, compared to 3.1 percent of middle school teachers. Consequently, there were also 
higher percentages of incorrect teacher–student links in elementary school grades. For grades 7 
and 8, no teachers were misclassified by subject for either year. All misclassifications for middle 
school grades were in grade 6; all misclassified grade 6 teachers were in schools that spanned 
grades K–6 or K–8, where grade 6 homeroom teachers were assumed to be teaching both 
subjects. Sixth-grade teachers were never misclassified by subject in traditional middle schools 
housing grades 6–8. 

Administrative rosters are used for course scheduling in middle schools, but not in 
elementary schools. Consequently, it is easier to track the identities of a student’s math and 
reading/ELA teachers in a middle school. In elementary schools, most classrooms are self-
contained, so administrative rosters are not often used for course scheduling. As a result, the 
departmentalization of elementary classrooms is easy to miss when it does happen. Although it is 
not evident from the unconfirmed data, the confirmed data show that in DCPS, 27 percent of 
upper elementary school students are taught by a departmentalized teacher in math and 
28 percent in reading/ELA, with greater departmentalization in grade 5 than in grade 4. 
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B. Tracking and Heterogeneity of Classrooms 

A second reason why one might prefer to restrict studies that measure teacher effectiveness 
using value-added models to elementary school grades is that middle students may be more 
likely to be grouped by achievement levels (“tracked”) into different academic tracks—that is, 
some students will be placed in more advanced courses than others. Having unobservable 
differences in students by their academic track, few teachers who teach students on both tracks, 
or differing degrees of alignment between the post-tests and advanced versus basic courses can 
all pose problems for estimating teacher value added (Jackson 2012; Protik et al. 2013; Harris 
and Anderson 2013). Loveless (2009) writes that “middle school is where tracking begins, 
providing a bridge between the heterogeneously grouped classes of elementary school and the 
tracked classes of high school.”  

To examine the degree of tracking by grade level, we measured the percentage of variation 
in student pre-test scores arising from differences between students at different schools, between 
students in different classrooms within a school, and between students within the same class. If 
there is more tracking at the middle school level, one would expect to see a greater amount of 
variation in test scores accounted for within schools. We used a three-level unconditional 
hierarchical linear model, with students nested within classrooms, and classrooms nested within 
schools, to decompose the variance of pre-test scores into these three components.3 Data are 
from the 2011–2012 school year because data from 2010–2011 do not contain indicators 
distinguishing separate classrooms within a teacher. We used only confirmed roster data for 
these calculations. The course titles used in DCPS suggest that, at the middle school level, math 
courses are targeted to students at different levels of prior achievement, but it is not clear 
whether this is the case in reading/ELA (Protik et al. 2013). 

As expected, there is a greater share of the total variation explained by within-school 
variation in the middle school grades compared to the upper elementary school grades, 
suggesting more tracking in middle school (Table III.3). For math, 3 percent of the variation in 
student pre-test scores is explained by within-school differences in upper elementary grades, 
compared to 22 percent in middle school grades. For reading/ELA, the difference is 4 percent for 
upper elementary grades compared to 15 percent for middle school grades. For both subjects, the 
percentage of the variance explained by variation between classrooms within a school grows by 
grade level. For example, in math, it grows from 1 percent for grade 4 to 27 percent for grade 8. 
This is evidence that more schools adopt tracking as grade levels progress.  

  

                                                 
3 We excluded grades in schools with a single classroom since it was not possible for a school to create 

separate tracks in this case. Instead, because there can be no variation between classrooms in these schools, we 
included them in the results by assigning a value of 0 for between teacher/class variation and weighting the HLM 
estimates by one minus the share of students who were excluded. This was a substantial share of schools in DCPS: 
19 percent of school–grade combinations had one classroom in math and 20 percent had one classroom in reading. If 
we weight each school–grade combination by the number of students, 9 percent of school–grade combinations had 
one classroom. 
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Table III.3. Evidence of Tracking by Grade Span: Decomposition of Variance of Pre-test Scores 

 

Percentage of 
Variance Between 

Schools 

Percentage of 
Variance Between 
Classrooms Within 

Schools 

Percentage of 
Variance Between 
Students Within 

Classrooms Number of Students 

Math      

Grade 4 0.30 0.01 0.69 3,364 
Grade 5 0.29 0.05 0.66 3,208 
Grades 4 and 5 0.28 0.03 0.69 6,572
Grade 6 0.14 0.15 0.71 2,213 
Grade 7 0.10 0.21 0.69 1,902 
Grade 8 0.14 0.27 0.59 2,019 
Grades 6 to 8  0.12 0.22 0.66 6,134

Reading/ELA     

Grade 4 0.24 0.01 0.75 3,424 
Grade 5 0.26 0.06 0.68 3,395 
Grades 4 and 5 0.23 0.04 0.73 6,819
Grade 6 0.15 0.09 0.76 2,398 
Grade 7 0.10 0.13 0.77 2,354 
Grade 8 0.16 0.20 0.64 2,394 
Grades 6 to 8 0.12 0.15 0.73 7,146

Source: District of Columbia Public Schools and Office of the State Superintendent of Education administrative 
data. 

Notes: The decomposition of the variance of pre-test scores at each level was carried out using a three-level, 
unconditional hierarchical linear model. 

 Data are from students enrolled in DCPS in the 2011–2012 school year. 

The greater variation between classrooms within a school at the middle school level is offset 
by greater variation between schools at the upper elementary school level, however, as would 
result from more homogenous attendance areas for elementary schools compared to larger 
attendance areas for middle schools. Consequently, the percent of variation explained by 
differences between students within a classroom has a smaller range across grade levels than the 
percentage explained by between-school or between-classroom differences. For math, despite a 
difference of 19 percentage points between the upper elementary and middle school grade levels 
in the percentage of variance explained by differences between classrooms within a school, the 
percentage of variance explained by variation between schools is greater at the upper elementary 
school level by 16 percentage points—28 percent versus 12 percent. For reading/ELA, a 
difference of 11 percentage points between classrooms within schools is exactly offset by greater 
between-school differences at the upper elementary school level. One caveat in generalizing 
these results to other districts is that there were many small schools in DCPS in the 2010–2011 
school year; if smaller attendance areas contributed to more homogenous groups of students at 
each school in DCPS, then the amount of between-school variation may be higher than would be 
expected in a district with larger schools. 

For value-added models, if one estimates differences for teachers within a school by 
including school fixed effects (for example, Jackson and Bruegmann 2009), there could be 
advantages to focusing on upper elementary school grades. For models that seek to compare all 
teachers in a district, the potential advantage of using elementary school grades disappears, as 
greater within-school differences in middle school grades are offset by greater between-school 
differences in students in upper elementary school grades. Variations in test scores are not by 
themselves problematic, since value-added models account for pre-test scores as a key control 
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variable. However, greater between-school heterogeneity might result in difficulties in estimating 
value added at the upper elementary school level that parallel those present at the middle school 
level. For example, one might be concerned that there are unobservable differences in parents 
across schools at the upper elementary school level, few teachers who teach students with 
overlapping distributions of pre-test achievement, or better alignment between post-tests and the 
curriculum as implemented in some schools compared to others. 

IV. APPLICATION: CORRELATION OF VALUE-ADDED ESTIMATES 
ACROSS YEARS AND GRADES 

As an application of what would happen if we were to base judgments about value-added 
models only on unconfirmed data, we measured the correlation in value-added estimates across 
years and grades using the unconfirmed data and again using the roster-confirmed data. Interest 
in year-to-year correlation in value has increased as school districts have adopted value-added 
estimates as a component of teacher evaluation systems. These systems implicitly assume that a 
teacher’s evaluation this year is a good predictor of his or her effectiveness the next year. Cross-
subject correlations are important in an evaluation context if teachers are evaluated on tested 
subjects but not on untested subjects. Correlations between mismeasured estimates and other 
estimates for the same teachers in another subject or another year, which may or may not also be 
mismeasured, could appear more or less stable than correlations based on roster-confirmed data 
without misclassification errors. This is because basing value added on better data will better 
reflect actual fluctuations in teacher effectiveness between subjects and years. 

Recent studies suggest that year-to-year correlations of value-added estimates range from 
0.2 to 0.7 and that cross-subject correlations range from 0.3 to 0.6 (Loeb and Candelaria 2012). 
Goldhaber and Hansen (2010) estimated year-to-year correlations of 0.3 in reading and 0.6 in 
math, based on single-cohort value-added models for grade 5. Looking at five large Florida 
school districts, McCaffrey et al. (2009) found year-to-year correlations of teacher value added 
in math from 0.2 to 0.5 in elementary school and from 0.3 to 0.7 in middle schools. Aaronson et 
al. (2007) and Koedel and Betts (2007) observed that teachers at the top or bottom of the value-
added distribution in one year are more likely to end up at the same end of the distribution the 
following year. Examples of cross-subject correlations include Koedel and Betts (2007), who 
found a correlation between math and reading value added of 0.4, and Loeb et al. (2012) and 
Goldhaber et al. (2012), who found correlations between 0.5 and 0.6.4 

We estimated value-added models for math and reading/ELA teachers in the 2010–2011 and 
2011–2012 school years separately for the analysis files created using confirmed rosters and 

                                                 
4 Although value-added estimates that vary from year to year or between subjects may reflect real fluctuations 

in a teacher’s effectiveness, they might also indicate some imprecision and bias in the process for estimating value-
added estimates. Correlations that adjust for the amount of imprecision in the estimates—and therefore reflect year-
to-year correlations in underlying teacher effectiveness if the estimates are unbiased—are larger. For example, the 
year-to-year correlations in Goldhaber and Hansen (2010) increased to 0.6 in reading and 0.7 in math after adjusting 
for imprecision. Also, the cross-subject correlation in Koedel and Betts (2007) increased to 0.6 after this adjustment. 
However, if value-added estimates are biased, these correlations may not reflect true stability. Furthermore, the 
direction of the effect on stability of removing bias will depend on the source and form of the bias. 
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those created using unconfirmed rosters. We applied the same methods and exclusion rules to 
both sets of files. After having assembled two data sets based on the confirmed and unconfirmed 
class rosters, we proceeded to estimate value added by year (2010–2011 and 2011–2012) and 
subject (math and reading) for all teachers with at least 15 students in the subject–year 
combination. These value-added estimates were made based on one year of student growth data. 
We included all teachers who appeared on each of the rosters and did not restrict the sample of 
teachers analyzed as we did in Table III.2. However, only teachers who taught 15 or more 
students over the course of the school year in at least one subject have value-added estimates. 
Full details of the value-added model are given in Appendix A, and details for the other data 
used to estimate value added are given in Appendix B. 

A. Year-to-Year Correlations 

For teachers who have same-subject value-added estimates for both the 2010–2011 and 
2011–2012 academic years, we examined the stability of these value-added estimates from one 
year to the next. These correlations are presented by grade and grade span in Table IV.1. 

Table IV.1. Year-to-Year Correlations of Estimated Teacher Value Added (2010–2011 and 2011–2012)  

 

Unconfirmed 
Roster 

(1) 

Number of Teachers 
(Unconfirmed Rosters)

(2) 

Confirmed 
Roster 

(3) 

Number of Teachers 
(Confirmed Roster) 

(4) 

Math Teachers     
Grade 4 0.30 47 0.33 50 
Grade 5 0.28 57 0.20 57 
Grades 4 and 5 0.25 118 0.22 112
Grades 6 to 8 0.26 44 0.23 47
Grades 4 to 8 0.26 169 0.21 164

Reading/ELA Teachers     
Grade 4 0.32 46 0.53 48 
Grade 5 0.48 56 0.33 62 
Grades 4 and 5 0.34 115 0.40 119
Grades 6 to 8 0.16 44 0.08 56
Grades 4 to 8 0.23 167 0.29 179

Source: District of Columbia Public Schools and Office of the State Superintendent of Education administrative 
data. 

Notes: The numbers of teachers at individual grade levels do not necessarily add up to the total number of 
teachers within grade spans. This is because some teachers teach multiple grades and individual 
grade-level correlations only consider teachers who taught the same grade in both 2010–2011 and 
2011–2012. 

The correlations in Table IV.1 suggest no systematic gain (or loss) in year-to-year stability 
of value-added estimates transitioning from using unconfirmed roster data to confirmed roster 
data. The correlation decreased from 0.26 to 0.21 for math teachers overall, and increased from 
0.23 to 0.29 for reading/ELA teachers overall. However, all of the increase in the correlation for 
reading/ELA is due to grade 4 teachers. The stability of year-to-year value-added estimates of 
grade 4 teachers appears to have increased in both math and reading/ELA when confirmed roster 
data was used in place of unconfirmed roster data, though we did not find an increase in any 



12 

other grade or grade span.5 We chose not to adjust the correlations in Table IV.1 to account for 
imprecision, so the results reflect year-to-year fluctuations in value added due to both underlying 
teacher effectiveness and imprecision. 

In elementary grades, value-added estimates that use unconfirmed roster data need not lead 
to lower year-to-year correlations than those that use confirmed roster data, as long as 
classrooms of students rotate as a group from one teacher to another. For example, suppose 
teacher A in classroom A and teacher B in classroom B were erroneously classified as teaching 
both math and reading/ELA, when teacher A actually teaches math to both classes and teacher B 
teaches reading/ELA to both classes. The unconfirmed roster correlations would include value-
added estimates for both teachers in both subjects, whereas the confirmed data would include 
estimates for the teachers only in the subject they actually teach. Teacher A’s reading value 
added in the unconfirmed data would actually measure teacher B’s contributions in classroom A. 
In this example, including the misclassified value-added information in the correlation 
calculation would not obviously lead to lower stability, because teacher B’s contributions are 
linked year to year, even though they are attributed to teacher A and based on just one classroom.  

B. Cross-Subject Correlations 

In addition to examining the correlation of teachers’ value-added estimates from one year to 
the next, we also looked at whether teachers who taught both math and reading/ELA within the 
same year and had a high value-added estimate for one subject also tended to have a high value-
added estimate for the other subject. We excluded 7th- and 8th-grade teachers from this analysis 
because these grades are fully departmentalized in our data. We did, however, examine the small 
number of grade 6 teachers who taught both math and reading/ELA in self-contained classroom 
settings, although correlations using grade 6 data are aggregated with those for grades 4 and 5. 
Again, we chose not to adjust these correlations to account for imprecision, so the results reflect 
fluctuations in value added across subjects due to both underlying teacher effectiveness and 
imprecision. 

Comparing the correlations in columns (1) and (3), it appears that the cross-subject 
correlations in elementary grades are higher when we use confirmed roster data to estimate value 
added than when we used unconfirmed roster data. As shown in Table IV.2, for grades 4 to 6 
combined, the cross-subject correlation in the unconfirmed rosters is 0.60 but rises to 0.65 in the 
confirmed rosters. One explanation is to consider again the case in which teacher A was 
erroneously classified as teaching both subjects in classroom A and teacher B was erroneously 
classified as teaching both subjects in classroom B, although teacher A actually teaches math to 
both classes and teacher B teaches reading/ELA to both classes. The confirmed roster cross-
subject correlations will not include teachers A and B, because they each teach only one subject. 
However, both teachers’ cross-subject correlations will be included in the case of the 
unconfirmed roster. If teacher A’s effectiveness is very different from teacher B’s, the erroneous 
cross-subject correlations for both teachers will be low. 

                                                 
5 We did not compare correlations for individual middle school grades because of small within-grade sample 

sizes. 
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Table IV.2. Cross-Subject Correlations of Estimated Teacher Value Added  

 
Unconfirmed Roster

(1) 
N 
(2) 

Confirmed Roster 
(3) 

N 
(4) 

Grade 4 0.67 237 0.69 182 
Grade 5 0.54 235 0.64 187 
Grades 4 to 6 0.60 488 0.65 366

Source: District of Columbia Public Schools and Office of the State Superintendent of Education administrative 
data. 

Notes: Statistics are based on two years of data, from the 2010–2011 and 2011–2012 school years. The 
sample size is the number of teacher-year observations. 

Grade-level correlations for grades 4 and 5 compare value-added estimates of teachers who taught 
both subjects for that grade. Because some teachers taught multiple grades, teachers could be counted 
separately within a year for grades 4 and 5, but would only be counted once for that year when 
combining results across grades 4 to 6. 

As a test of this potential explanation, we calculated correlations based on a restricted 
sample of 250 teacher-year observations over two years. These teachers were linked to both 
subjects in both the confirmed and unconfirmed rosters. Consistent with the explanation of 
subject assignment misclassifications, the cross-subject correlations were 0.61 in both data sets. 
These results suggest that cross-subject correlations based on administrative data may be lower 
than correlations based on roster-confirmed data as a result of subject assignment 
misclassifications. 

V. CONCLUSIONS 

It is often assumed that elementary school data are better suited than middle school data to 
research that measures teacher effectiveness using value-added models because (1) elementary 
school teachers have a single, self-contained classroom of students to whom they teach all 
subjects and (2) researchers can avoid potential difficulties associated with tracking by 
achievement level in middle schools. We have shown, however, that, at least with DCPS data, it 
would often be incorrect to assume no departmentalization of instruction in grades 4 and 5. 
Attributing subject assignments to teachers based on the homeroom assignments of students in 
grades 4 and 5 would lead to about one in six teachers being misclassified in each subject. In 
contrast, subject assignments for middle school teachers are rarely incorrect. As for concerns that 
classrooms of the same grade and subject are stratified by achievement in middle school, we 
confirmed that there is greater variation in student achievement across classrooms in grades 6 to 
8, but this is offset by more stratification by achievement across schools at the upper elementary 
school level. 

The important question for using administrative data for research on teachers is when and 
how much these misclassification errors matter. In the example we examined, misclassification 
errors mattered much more for measuring cross-subject correlations in value-added estimates 
than in measuring cross-year correlations. In general, if the same students stay together when 
they are taught by different teachers, misclassification will not matter as long as the identity of 
the teacher is unimportant to the application being studied. This phenomenon appears to 
contribute to our finding little difference in the measure of year-to-year correlations when using 
roster-confirmed versus unconfirmed data. If knowing the identity of the teacher is important, 
however—as in the example of cross-subject correlations or, for example, if value-added data are 
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to be linked to teacher personnel data—then misclassification errors that arise using unconfirmed 
data may more seriously affect the results. 

In the long run, as more districts adopt roster confirmation as a way of incorporating value 
added into teacher evaluation systems, one side benefit will be better data on teacher–student 
links for research. Researchers may then no longer need to be concerned about problems of using 
unconfirmed data. In the meantime, because of missing data on departmentalization of 
elementary school teaching, one should be cautious about assuming that data from upper 
elementary school grades are necessarily superior to data from middle school grades for 
conducting research that involves value-added estimates. The extent of problems that arise with 
using unconfirmed data depend on the way in which teacher value-added estimates are merged or 
otherwise linked to other data on teachers. 
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APPENDIX A 

Estimating Teacher Effectiveness 

1. Value-Added Model 

After assembling the analysis file, we estimated a regression separately for math and reading 
using students at upper elementary (grades 4 and 5) and middle school (grades 6, 7, and 8) levels 
in the data. In each regression equation, the post-test score depends on prior achievement, 
student background characteristics, variables linking students to schools or teachers, and 
unmeasured factors. 

The model accounts for team teaching that occurs at the teacher level and the unit of 
observation is a teacher–student combination. We assume that the combined effort of team 
teachers constitutes a single input into student achievement (Hock and Isenberg 2012). For a 
given teacher t and student i, the regression equation may be expressed as 

(1) 2 ( 1) 2 ( 1) 2 2 2tig g i g g i g i tig tigY Y Z         X T 
, 

where Yig is the post-test score for student i in grade g and Yi(g−1) is the same-subject pre-test for 
student i in grade g−1 during the previous year. The variable Zi(g−1) denotes the pre-test in the 
opposite subject. Thus, when estimating teacher value added in math, Y represents math tests and 
Z represents reading tests, and vice versa. The pre-test scores capture prior inputs into student 
achievement, and the associated coefficients, λg and ωg, vary by grade. The vector Xi denotes the 
control variables for individual student background characteristics. The coefficients on these 
characteristics, α, are constrained to be the same across all grades within the relevant grade 
span.6 The vector Ttig includes a grade-specific variable for each teacher and includes a variable 
for a catchall ineligible teacher in each grade to account for student dosage that cannot be 
attributed to a particular teacher who is eligible to receive a value-added estimate. A student 
contributes one observation to the model for each teacher the student is linked to, based on the 
roster confirmation process. Each teacher–student observation has one nonzero element in Ttig. 
Measures of teacher effectiveness are contained in the coefficient vector η and we mean centered 
the control variables so that each element of η represents a teacher- and grade-specific intercept 
term for a student with average characteristics.7 

                                                 
6 We estimated a common, grade-invariant set of coefficients of student background characteristics because our 

calculations using 2009–2010 data revealed substantial differences in sign and magnitude of grade-specific 
coefficients on these covariates. These cross-grade differences appeared to reflect small within-grade samples of 
individuals with certain characteristics rather than true differences in the association between student characteristics 
and achievement growth. Estimating a common set of coefficients across grades allowed us to base the association 
between achievement and student characteristics on information from all grades, which should smooth out the 
between-grade differences in these coefficients. 

7 Mean centering the student characteristics and pre-test scores tends to reduce the estimated standard errors of 
the school effects (Wooldridge 2008). 
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To account for multiple observations on the same student, we estimated the coefficients by 
using weighted least squares rather than ordinary least squares. In this method, the teacher–grade 
variables in Ttig are binary, and we weighted each teacher–student combination by the teacher 
dosage associated with that combination. We addressed the correlation in the error term, ε2tig, 
across multiple observations by using a cluster-robust sandwich variance estimator (Liang and 
Zeger 1986; Arellano 1987) to obtain standard errors that are consistent in the presence of both 
heteroskedasticity and clustering at the student level. 

This teacher regression yields separate value-added coefficients for each grade in which a 
teacher is linked to students. To improve the precision of the estimates, we estimated a grade-
specific coefficient for a teacher only if he or she teaches at least seven students in that grade.8 
We then aggregated teacher estimates across grades to form a single estimate for each teacher 
(see Section 3 below). 

2. Measurement Error in the Pre-Tests 

We corrected for measurement error in the pre-tests by using grade-specific reliability data 
available from the test publisher (CTB/McGraw Hill 2010; 2011). As a measure of true student 
ability, standardized tests contain measurement error, causing standard regression techniques to 
produce biased estimates of teacher or school effectiveness. To address this issue, we 
implemented a measurement error correction based on the test/retest reliability of the DC CAS 
tests. By netting out the known amount of measurement error, the errors-in-variables correction 
eliminates this source of bias (Buonaccorsi 2010). 

Correcting for measurement error requires a two-step procedure. In the first step, we used a 
dosage-weighted errors-in-variables regression based on Equation (1) to obtain unbiased 
estimates of the pre-test coefficients for each grade. We used the published reliabilities 
associated with the 2010 and 2011 DC CAS. We then used the measurement-error corrected 
values of the pre-test coefficients to calculate the adjusted gain for each student in each grade. 
The adjusted gain is expressed as 

(2) 2 ( 1) 2 ( 1)
ˆ ˆ ˆtig tig g i g g i gG Y Y Z    

, 

and represents the student post-test outcome, net of the estimated contribution attributable to the 
student’s starting position at pre-test. 

                                                 
8 Although teachers must teach at least 15 students for DCPS to evaluate them on the basis of individual value 

added, we included in the regression teachers with 7 to 14 students for two reasons. First, we expected that 
maintaining more teacher–student links will lead to coefficients on the covariates that are estimated more accurately. 
Second, we expected that value-added estimates for these teachers will provide useful data to include in the 
standardization and shrinkage procedures described below. We did not include teachers with fewer than seven 
students, because estimates for such teachers would be too likely to be outliers, which could skew the 
standardization and shrinkage procedures. If a teacher had fewer than seven students in a grade, we reallocated those 
students to a grade-specific catchall ineligible teacher. 
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In the second step, we pooled the data from all grades and used the adjusted gain as the 
dependent variable in a single equation expressed as 

(3) 2 2
ˆ

tig i tig tigG    X T 
. 

We obtained the grade-specific estimates of teacher effectiveness, ̂, by applying the weighted 
least squares regression technique to Equation (3).  

This two-step method will likely underestimate the standard error of ̂ because the adjusted 
gain in Equation (2) relies on the estimated value of λg, which implies that the error term in 
Equation (3) is clustered within grades. This form of clustering typically results in estimated 
standard errors that are too small because the second-step regression does not account for a 
common source of variability affecting all students in a grade. In view of the small number of 
grades, standard techniques of correcting for clustering will not effectively correct the standard 
errors (Bertrand et al. 2004). Nonetheless, with the large within-grade sample sizes, the pre-test 
coefficients are likely to be estimated precisely, leading to a negligible difference between the 
robust and clustering-corrected standard errors. 

3. Combining Estimates Across Grades 

Both the average and the variability of value-added estimates may differ across grade levels, 
leading to a potential problem when comparing teachers assigned to different grades. The main 
concern is that factors beyond teachers’ control—rather than teacher distribution or school 
effectiveness—may drive cross-grade discrepancies in the distribution of value-added estimates. 
For example, the standard deviation of adjusted gains might vary across grades as a consequence 
of differences in the alignment of tests or the retention of knowledge between years. However, 
we sought to compare all teachers to all others in the regression regardless of any grade-specific 
factors that might affect the distribution of gains in student performance between years.9 Because 
we did not want to penalize or reward teachers simply for teaching in a grade with unusual test 
properties, we translated grade-level estimates for teachers so that each set of estimates is 
expressed in a common metric. 

We standardized the estimated regression coefficients so that the mean and standard 
deviation of the distribution of teacher estimates are the same across grades. First, we subtracted 
from each unadjusted estimate the weighted average of all estimates within the same grade. We 
then divided the result by the weighted standard deviation within the same grade. To reduce the 
influence of imprecise estimates obtained from teacher–grade combinations with few students, 
we based the weights on the number of students taught by each teacher. 

Aside from putting value-added estimates for teachers onto a common scale, this approach 
equalizes the distribution of teacher estimates across grades. It does not reflect a priori 

                                                 
9 Because each student’s entire dosage was accounted for by teachers or schools in a given grade, the 

information contained in grade indicators would be redundant to the information contained in the teacher or school 
variables. Therefore, it is not also possible to control directly for grade in the value-added regressions. 
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knowledge that the true distribution of teacher effectiveness is similar across grades. Rather, 
without a way to distinguish cross-grade differences in teacher effectiveness from cross-grade 
differences in testing conditions, in the test instrument itself, or in student cohorts, we assumed 
that the distribution of true teacher effectiveness is the same across grades. 

To combine effects across grades into a single effect for a given teacher, we used a weighted 
average of the grade-specific estimates. We set the weight for grade g equal to the proportion of 
students of teacher t in grade g. Because combining teacher effects across grades may cause the 
overall average to be nonzero, we re-centered the estimates on zero before proceeding to the next 
step. 

4. Shrinkage Procedure 

To reduce the risk that teachers, particularly those with relatively few students in their grade, 
will receive a very high or very low effectiveness measure by chance, we applied the empirical 
Bayes (EB) shrinkage procedure, as outlined in Morris (1983), separately to the sets of 
effectiveness estimates for teachers. Using the EB procedure, we computed a weighted average 
of an estimate for the average teacher (based on all students in the model) and the initial estimate 
based on each teacher’s own students. For teachers with relatively imprecise initial estimates 
based on their own students, the EB method effectively produces an estimate based more on the 
average teacher. For teachers with more-precise initial estimates based on their own students, the 
EB method puts less weight on the value for the average teacher and more weight on the value 
obtained from the teacher’s own students. 

The EB estimate for a teacher is approximately equal to a precision-weighted average of the 
teacher’s initial estimated effect and the overall mean of all estimated teacher effects.10 We 
calculated the standard error for each shrinkage estimate using the formulas provided by Morris 
(1983). As a final step, we removed any teachers with fewer than 15 students from the model and 
re-centered the EB estimates on zero. 

                                                 
10 Following Morris (1983), the EB estimate does not exactly equal the precision-weighted average of the two 

values due to a correction for bias. This adjustment increases the weight on the overall mean by (K – 3)/(K – 1), 
where K is the number of teachers. 
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APPENDIX B 

Data 

When estimating the effectiveness of DCPS teachers, we included students in grades 4-8 if 
they had a post-test score from 2011 or 2012 and a pre-test from the previous grade in the same 
subject in the previous year. We excluded students from the analysis file in the case of missing or 
conflicting school enrollment data, test-score data, or student background data.11,12 We also 
excluded students who repeated or skipped a grade because they lacked pre-test and post-test 
scores in consecutive grades and years. Between 86 and 89 percent of students with post-test 
scores were included in each of the subject- and year-specific value-added models. 

In addition to the confirmed and unconfirmed rosters discussed in the preceding section, we 
used other administrative data provided by DCPS and the Office of the State Superintendent of 
Education (OSSE) to estimate value-added models. In particular, we used data on student test 
scores, student background characteristics, and school enrollment. 

The DC Comprehensive Assessment System (DC CAS), administered in April, is the set of 
standardized tests used for accountability purposes in DCPS. Test scores on the DC CAS are not 
vertically scaled and may therefore be meaningfully compared only within grades and within 
subjects. Math scores, for example, are generally more dispersed than reading scores within the 
same grade. Therefore, before using the test scores in the value-added model, we created subject- 
and grade-specific z-scores by subtracting the mean and dividing by the standard deviation 
within a subject-grade combination. This step allowed us to translate math and reading scores in 
every grade and subject into a common metric.  

We used data provided by OSSE and DCPS to construct variables used in the value-added 
models as controls for student background characteristics. All value-added models account for 
the following: pre-test in same and opposite subjects, gender, race/ethnicity, free-lunch 
eligibility, reduced-price lunch eligibility, limited English proficiency status, existence of a 
specific learning disability, existence of other types of disabilities requiring special education, 
and the proportion of days that the student attended school during the previous year. We included 
attendance because it could reflect some aspects of student motivation. We used previous—
rather than current-year—attendance to avoid confounding student attendance with current-year 
teacher effectiveness; that is, a good teacher versus a weaker teacher might be expected to 
motivate students to attend school more regularly. Attendance is a continuous variable that could 
range from zero to one. Aside from pre-test variables, the other variables are binary variables 
taking the value zero or one. Table B.1 shows the characteristics of students from the confirmed 
rosters included in the value-added models. The composition of students from the unconfirmed 
rosters included in the value-added models is similar. 

                                                 
11 We considered a student who answered fewer than five questions on the DC CAS post-test to be missing test 

score data. 
12 We included students who were missing individual student background characteristics but excluded those for 

whom no data on background characteristics were available. 
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Table B.1. Mean Characteristics of Students from the Confirmed Rosters Included in the Value-Added Models 

 Math Reading 

 2010–2011 2011–2012 2010–2011 2011–2012 

Male 0.49 0.48 0.49 0.50 

White 0.11 0.11 0.13 0.12 

Black 0.72 0.72 0.71 0.73 

Hispanic 0.17 0.17 0.17 0.15 

Eligible for Free Lunch 0.64 0.64 0.68 0.69 

Eligible for Reduced-price Lunch 0.06 0.06 0.05 0.05 

Limited English Proficiency 0.08 0.07 0.07 0.06 

Proportion of the Prior Year Student Attended School 0.95 0.95 0.94 0.94 

Specific Learning Disability 0.06 0.07 0.08 0.09 

Other Learning Disability 0.04 0.04 0.05 0.05 

Source: District of Columbia Public Schools and Office of the State Superintendent of Education administrative 
data. 

Notes: Free and reduced-price lunch status was imputed using data from prior years for approximately 12 
percent of students in the teacher model. For all other student characteristics, less than 1 percent of 
students had missing data. 

We imputed data for students who were included in the analysis file but who had missing 
values for one or more student characteristics. Our imputation approach used the values of 
nonmissing student characteristics to predict the value of the missing characteristic.13 We did not 
generate imputed values for the same-subject pre-test; we dropped from the analysis file any 
students with missing same-subject pre-test scores.  

Given that some students moved between schools or were taught by a combination of 
teachers, we apportioned their achievement among more than one school or teacher. We refer to 
the fraction of time the student was enrolled at each school and with each teacher as the 
“dosage.” We created “school dosage” for each school–student combination based on school 
enrollment data. If the roster data indicated that a student had one math or reading/ELA teacher 
at a school, we set the teacher–student weight equal to the school dosage. If a student changed 
teachers from one term to another, we determined the number of days the student spent with each 
teacher, subdividing the school dosage among teachers accordingly. When two or more teachers 
claimed the same students during the same term, we assigned each teacher full credit for the 
shared students. We therefore did not subdivide dosage for co-taught students. 

  

                                                 
13 For missing data on free or reduced-price lunch status, we used an alternative imputation procedure because 

these data are missing for DCPS students attending Provision 2 schools, which do not collect information on free 
and reduced-price lunch status every year. We also used an alternative imputation method to impute missing 
attendance data for students who did not attend a DC school for part of the previous year. These methods are 
described in Isenberg and Hock (2012).  
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